Abstract

Prussian blue analogues are potential competitive energy storage materials due to their diverse metal combinations and wide three-dimensional ion channels. Here, we prepared a new highly crystalline monoclinic nickel-doped cobalt hexacyanoferrate via a feasible and simple one-step co-precipitation method. In the process of sodium-ion de-intercalation, three stable charge and discharge platforms, which are consistent with the cyclic voltammetry performance, are seen for the first time, showing the function of nickel ions in Prussian blue. Furthermore, the charge transfer and structural evolution caused by the transmission of sodium ions were well revealed via ex situ XRD, ex situ XPS, and in situ EIS studies. Simulation calculations are performed relating to the energy band structure and the highest-occupied bonding orbitals of the system in different charge states, revealing the charge and discharge mechanism of the nickel-doped material and the reason for the emergence of the new platform at low voltages. In addition, NaNi0.17Co0.83Fe(CN)6 also delivers a striking capacity of 146 mA h g-1 and superior cyclability, with 93% capacity retention over 100 cycles; it can be considered as a promising alternative cathode material for use in sodium-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.