Abstract

A Newton-type method is proposed for the recovery of the unknown coefficient function in the canonical Sturm-Liouville differential equation from two spectral data. Specifically, the two spectral data will be used to produce two Cauchy data, which in turn will serve as the input in a non-linear equation whose unknown is the coefficient function in the canonical Sturm-Liouville differential equation. This non-linear equation is to be solved numerically by the Newton method. Each Newton iterate requires that a Goursat-Cauchy boundary value problem be solved numerically. The Fréchet differentiability of the non-linear map is also discussed in the present paper. The numerical implementation of the Newton method for this inverse Sturm-Liouville problem is illustrated with examples, and it will be compared with a quasi-Newton method, and with a variational method discussed in previous literature. The numerical examples show that the Newton method needs fewer iterates to recover the true coefficient function than the quasi-Newton method. The Newton method is comparable with the variational method in terms of accuracy and number of iterates when the boundary parameters are given, and it requires a much smaller number of iterates than the variational method, when the boundary parameters are reconstructed from the available spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.