Abstract
In this study, a Newton method is developed to obtain (weak) Pareto optimal solutions of an unconstrained multiobjective optimization problem (MOP) with fuzzy objective functions. For this purpose, the generalized Hukuhara differentiability of fuzzy vector functions and fuzzy max-order relation on the set of fuzzy vectors are employed. It is assumed that the objective functions of the fuzzy MOP are twice continuously generalized Hukuhara differentiable. Under this assumption, the relationship between weakly Pareto optimal solutions of a fuzzy MOP and critical points of the related crisp problem is discussed. Numerical examples are provided to demonstrate the efficiency of the proposed methodology. Finally, the convergence analysis of the method under investigation is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.