Abstract

The present paper is dedicated to the numerical solution of Bernoulli’s free boundary problem in three dimensions. We reformulate the given free boundary problem as a shape optimization problem and compute the shape gradient and Hessian of the given shape functional. To approximate the shape problem we apply a Ritz–Galerkin discretization. The necessary optimality condition is resolved by Newton’s method. All information of the state equation, required for the optimization algorithm, are derived by boundary integral equations which we solve numerically by a fast wavelet Galerkin scheme. Numerical results confirm that the proposed Newton method yields an efficient algorithm to treat the considered class of problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call