Abstract

A variant of the Newton method for nonsmooth equations is applied to solve numerically quasivariational inequalities with monotone operators. For this purpose, we investigate the semismoothness of a certain locally Lipschitz operator coming from the quasi-variational inequality, and analyse the generalized Jacobian of this operator to ensure local convergence of the method. A simplified variant of this approach, applicable to implicit complementarity problems, is also studied. Small test examples have been computed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.