Abstract
Smoke has large variances of visual appearances that are very adverse to visual segmentation. Furthermore, its semi-transparency often produces highly complicated mixtures of smoke and backgrounds. These factors lead to great difficulties in labelling and segmenting smoke regions. To improve accuracy of smoke segmentation, we propose a Newton Interpolation Network (NINet) for visual smoke semantic segmentation. Unlike simply concatenating or point-wisely adding multi-scale encoded feature maps for information fusion or re-usage, we design a Newton Interpolation Module (NIM) to extract structured information by analyzing the feature values in the same position but from encoded feature maps with different scales. Interpolated features by our NIM contain long-range dependency and semantic structures across different levels, but traditional fusion of multi-scale feature maps cannot model intrinsic structures embedded in these maps. To obtain multi-scale structured information, we repeatedly use the proposed NIM at different levels of the decoding stages. In addition, we use more encoded feature maps to construct a higher order Newton interpolation polynomial for extracting higher order information. Extensive experiments validate that our method significantly outperforms existing state-of-the-art algorithms on virtual and real smoke datasets, and ablation experiments also validate the effectiveness of our NIMs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.