Abstract
For the Lagrangian-DNN relaxation of quadratic optimization problems (QOPs), we propose a Newton-bracketing method to improve the performance of the bisection-projection method implemented in BBCPOP [ACM Tran. Softw., 45(3):34 (2019)]. The relaxation problem is converted into the problem of finding the largest zero of a continuously differentiable (except at ) convex function such that if and otherwise. In theory, the method generates lower and upper bounds of both converging to . Their convergence is quadratic if the right derivative of g at is positive. Accurate computation of is necessary for the robustness of the method, but it is difficult to achieve in practice. As an alternative, we present a secant-bracketing method. We demonstrate that the method improves the quality of the lower bounds obtained by BBCPOP and SDPNAL+ for binary QOP instances from BIQMAC. Moreover, new lower bounds for the unknown optimal values of large scale QAP instances from QAPLIB are reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.