Abstract
In this article we report a novel phenomenon that we observed while evaluating the performances of different models of silicon photomultiplier detectors at liquid nitrogen temperature. Bursts of consecutive events, characterized by a rate that is about 100 times that of the single-event uncorrelated dark counts, are generated within the SiPMs, resulting in an overall increase of the dark current. We observed these bursts in the vast majority of the tested SiPM models manifactured by Hamamatsu Photonics K.K. This observation is part of an effort to fully characterise the behaviour of SiPMs at cryogenic temperature. The investigation of this phenomenon, of which a first attempt is presented in this article, can impact future production and selection of models for both high energy physics and industrial applications.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.