Abstract
Hereditary spastic paraplegia (HSP) is a clinically and genetically heterogeneous group of neurodegenerative disorders characterized by spasticity of the lower limbs due to pyramidal tract dysfunction. Here, we report that a missense homozygous mutation c.424G>T (p.D142Y) in the FARS2 gene, which encodes a mitochondrial phenylalanyl tRNA synthetase (mtPheRS), causes HSP in a Chinese consanguineous family by using combination of homozygous mapping and whole-exome sequencing. Immunohistochemical experiments were performed showing that the FARS2 protein was highly expressed in the Purkinje cells of rat cerebellum. The aminoacylation activity of mtPheRS was severely disrupted by the p.D142Y substitution in vitro not only in the first aminoacylation step but also in the last transfer step. Taken together, our results indicate that a missense mutation in FARS2 contributes to HSP, which has the clinical significance of the regulation of tRNA synthetases in human neurodegenerative diseases.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.