Abstract

Radioguided surgery depends on the intra-operative detection of radiolabelled tissues. This is currently accomplished with hand tools capable of providing a tone signal, depending on the proximity and direction of a radioactive source in relation to the probe. The advantages of visual images of radiolabelled tissues are well recognised, but satisfactory means of acquiring such images intra-operatively are not yet available. The goal of this study was to examine the performance of a newly developed intra-operative gamma camera, compact enough to be a hand tool and capable of yielding a visual image of the source field. The study was performed in the laboratory with a phantom consisting of a water bath and small hollow spheres (1-2 cm in internal diameter) filled with 99mTc (1-5 microCi/cc), placed in different configurations within the bath. For comparison, studies were also performed using a standard intra-operative gamma probe, and others using a standard single-head high-resolution gamma camera. Compared with the gamma probe, the intra-operative camera was found to possess a superior ability to distinguish small, deep and weakly localised radioactivity sources from background. By acquiring images from different angles, it allowed a 3D understanding of multiple radioactive sources. It detected "cold" defects within a "hot" radiolabelled sphere. It discriminated a weak source located near a much "hotter" radioactivity source, similar to discrimination with the standard gamma camera, and discerned localised sources against a background of radioactivity. It is anticipated that the high imaging potential of the camera tested in this study will offer clinical advantages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call