Abstract

In this study, two strategies are simultaneously applied for photocatalytic activity enhancement of Bi2O3. The first strategy is to increase the light absorption via simultaneous carbon and nitrogen doping. The second strategy is to increase the charge carrier separation via Fe grafting. Transmission electron microscopy observation reveals the presence of Fe nanoclusters resided on the Bi2O3 surface. Near edge X-ray absorption fine structure (NEXAFS) analysis confirms the valence state of the Fe species to be +3, and their coordination to be octahedral. The C K-edge and N K-edge NEXAFS spectra furthermore confirm the incorporation of C and N species in the Bi2O3 structure. This newly constructed photocatalyst, denoted as Fe(III)-C/N-Bi2O3, shows appreciably enhanced photocatalytic performance for the decomposition of 2,4-dichlorophenol under visible light as compared to bare Bi2O3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.