Abstract

Due to the technological limitations associated with beneficiation technology, large amounts of flotation reagents and heavy metals remain in mineral processing wastewater. Unfortunately, however, no treatment methods are available to mitigate the resulting pollution by them. In this study, a bacterial consortium SDMC (simultaneously degrade butyl xanthate and biomineralize cadmium) was constructed in an effort to simultaneously degrade butyl xanthate (BX) and biomineralize cadmium (Cd) by screening and domesticating two different bacterial species including Hypomicrobium and Sporosarcina. SDMC is efficient in removing the combined pollution due to BX and Cd with a 100% degradation rate for BX and 99% biomineralization rate for Cd within 4 h. Besides, SDMC can tolerate high concentrations of Fe(III) (0–40 mg/L). It has an excellent ability to utilize Fe(III) for enhanced removal of the combined pollutants. SDMC can effectively remove pollutants with a pH range of 6–9. Further, we discussed pathways for potential degradation and biomineralization: Cd(BX)2-Cd2+, BX−; BX−-CS2, butyl perxanthate (BPX); Cd2+-(Ca0.67,Cd0.33)CO3. The removal of the combined pollutants primarily entails decomposition, degradation, and biomineralization, C–O bond cleavage, and microbially induced carbonate precipitation (MICP). SDMC is a simple, efficient, and eco-friendly bifunctional bacterial consortium for effective treatment of BX-Cd combined pollution in mineral processing wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call