Abstract

In this article, a terahertz absorber tuned by temperature field with a newfangled structure is presented, which comprises the mercury resonators. In this scheme, temperature (T) build-up will lead the mercury stored in the bottom slot to expand through the columniform hole and be full of the upper central cross container, which can transform the absorption bands of such an absorber. The simulated results manifest that when T is increased from 0 to 25 °C, the dual-frequency absorption points (2.59 THz, 3.03 THz) and a narrow absorption region over 90% (6.54–7.10 THz), whose relative bandwidth (RB) is 7.9%, will be tailored to a single-frequency point absorption (3.12 THz) and a broadband absorption area (6.00–7.21 THz, and RB = 18.3%). For figuring out the property of the absorber mentioned above, the impacts of incident and polarization angles along with some relevant parameters of the structure on the absorption property are investigated. In addition, for plainly expounding the physical mechanism of absorption, the distributions of the surface current diagrams of the presented absorber are calculated, as well as the electric field diagrams, the magnetic field diagrams, the power loss density diagrams, and the power flow density diagrams. The proffered scheme in this article may offer a novel idea for realizing the reconfigurable absorbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.