Abstract

The slow solvent evaporation approach was used to create a single crystal of (C7H6N3O2)2[ZnCl4] at room temperature. Our compound has been investigated by single-crystal XRD which declares that the complex crystallizes in the monoclinic crystallographic system with the P21/c as a space group. The molecular arrangement of the compound can be described by slightly distorted tetrahedral ZnCl42- anionic entities and 5-nitrobenzimidazolium as cations, linked together by different non-covalent interaction types (H-bonds, Cl…Cl, π…π and C-H…π). Hirshfeld's surface study allows us to identify that the dominant contacts in the crystal building are H…Cl/Cl…H contacts (37.3%). FT-IR method was used to identify the different groups in (C7H6N3O2)2[ZnCl4]. Furthermore, impedance spectroscopy analysis in 393 ≤ T ≤ 438 K shows that the temperature dependence of DC conductivity follows Arrhenius' law. The frequency-temperature dependence of AC conductivity for the studied sample shows one region (Ea = 2.75 eV). In order to determine modes of interactions of compound with double stranded DNA, molecular docking simulations were performed at molecular level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call