Abstract

Abstract The present work reports the synthesis, characterization and performance of a new zinc(II) complex of [Zn(C3H7-bim)2Br2] (bim = benzimidazole) as electrocatalyst for trichloroacetic acid and bromate reduction. Its structure was characterized by X-ray crystallography, IR spectroscopy and elemental analysis. The zinc atom adopts a distorted tetrahedral geometry by coordinating to two bromine atoms and two nitrogen atoms from two 1-propyl-1H-benzo[d]imidazole ligands. The electrochemical behavior and electrocatalysis of the zinc complex bulk-modified carbon paste electrode (Zn-CPE) have been studied by cyclic voltammetry. The Zn-CPE shows good electrocatalytic activities toward the reduction of trichloroacetic acid and bromate. The detection limit and the sensitivity are 0.05 μM, 67.43 μA μM−1 for trichloroacetic acid detection, and 0.02 μM, 69.94 μA μM−1 for bromate detection, respectively. This modified electrode shows good reproducibility, high stability, low detection limit, technical simplicity and possibility of rapid preparation, which is important for practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call