Abstract

Wet-bulb globe temperature (WBGT)-a standard measure for workplace heat stress regulation-incorporates the complex, nonlinear interaction among temperature, humidity, wind and radiation. This complexity requires WBGT to be calculated iteratively following the recommended approach developed by Liljegren and colleagues. The need for iteration has limited the wide application of Liljegren's approach, and stimulated various simplified WBGT approximations that do not require iteration but are potentially seriously biased. By carefully examining the self-nonlinearities in Liljegren's model, we develop a zero-iteration analytic approximation of WBGT while maintaining sufficient accuracy and the physical basis of the original model. The new approximation slightly deviates from Liljegren's full model-by less than 1°C in 99% cases over 93% of global land area. The annual mean and 75%-99% percentiles of WBGT are also well represented with biases within °C globally. This approximation is clearly more accurate than other commonly used WBGT approximations. Physical intuition can be developed on the processes controlling WBGT variations from an energy balance perspective. This may provide a basis for applying WBGT to understanding the physical control of heat stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.