Abstract

In yeast Saccharomyces cerevisiae, Ash1p, a protein determinant for mating-type switching, is segregated within the daughter cell nucleus to establish asymmetry of HO expression. The accumulation of Ash1p results from ASH1 mRNA that is sorted as a ribonucleoprotein particle (mRNP or locasome) to the distal tip of the bud where translation occurs. To study the mechanism regulating ASH1 mRNA translation, we isolated the ASH1 locasome and characterized the associated proteins by MALDI-TOF. One of these proteins was Puf6p, a new member of the PUF family of highly conserved RNA-binding proteins such as Pumilio in Drosophila, responsible for translational repression, usually to effect asymmetric expression. Puf6p-bound PUF consensus sequences in the 3'UTR of ASH1 mRNA and repressed the translation of ASH1 mRNA both in vivo and in vitro. In the puf6 Delta strain, asymmetric localization of both Ash1p and ASH1 mRNA were significantly reduced. We propose that Puf6p is a protein that functions in the translational control of ASH1 mRNA, and this translational inhibition is necessary before localization can proceed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call