Abstract

Membrane permeability is an in vitro parameter that represents the apparent permeability (Papp) of a compound, and is a key absorption, distribution, metabolism, and excretion parameter in drug development. Although the Caco-2 cell lines are the most used cell lines to measure Papp, other cell lines, such as the Madin-Darby Canine Kidney (MDCK), LLC-Pig Kidney 1 (LLC-PK1), and Ralph Russ Canine Kidney (RRCK) cell lines, can also be used to estimate Papp. Therefore, constructing in silico models for Papp estimation using the MDCK, LLC-PK1, and RRCK cell lines requires collecting extensive amounts of in vitro Papp data. An open database offers extensive measurements of various compounds covering a vast chemical space; however, concerns were reported on the use of data published in open databases without the appropriate accuracy and quality checks. Ensuring the quality of datasets for training in silico models is critical because artificial intelligence (AI, including deep learning) was used to develop models to predict various pharmacokinetic properties, and data quality affects the performance of these models. Hence, careful curation of the collected data is imperative. Herein, we developed a new workflow that supports automatic curation of Papp data measured in the MDCK, LLC-PK1, and RRCK cell lines collected from ChEMBL using KNIME. The workflow consisted of four main phases. Data were extracted from ChEMBL and filtered to identify the target protocols. A total of 1661 high-quality entries were retained after checking 436 articles. The workflow is freely available, can be updated, and has high reusability. Our study provides a novel approach for data quality analysis and accelerates the development of helpful in silico models for effective drug discovery. Scientific Contribution: The cost of building highly accurate predictive models can be significantly reduced by automating the collection of reliable measurement data. Our tool reduces the time and effort required for data collection and will enable researchers to focus on constructing high-performance in silico models for other types of analysis. To the best of our knowledge, no such tool is available in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call