Abstract

We propose an unobtrusive, wearable, and wireless system for the pre-screening and follow-up in the domestic environment of specific sleep-related breathing disorders. This group of diseases manifests with episodes of apnea and hypopnea of central or obstructive origin, and it can be disabling, with several drawbacks that interfere in the daily patient life. The gold standard for their diagnosis and grading is polysomnography, which is a time-consuming, scarcely available test with many wired electrodes disseminated on the body, requiring hospitalization and long waiting times. It is limited by the night-by-night variability of sleep disorders, while inevitably causing sleep alteration and fragmentation itself. For these reasons, only a small percentage of patients achieve a definitive diagnosis and are followed-up. Our device integrates photoplethysmography, an accelerometer, a microcontroller, and a bluetooth transmission unit. It acquires data during the whole night and transmits to a PC for off-line processing. It is positioned on the nasal septum and detects apnea episodes using the modulation of the photoplethysmography signal during the breath. In those time intervals where the photoplethysmography is detecting an apnea, the accelerometer discriminates obstructive from central type thanks to its excellent sensitivity to thoraco-abdominal movements. Tests were performed on a hospitalized patient wearing our integrated system and the type III home sleep apnea testing recommended by The American Academy of Sleep Medicine. Results are encouraging: sensitivity and precision around 90% were achieved in detecting more than 500 apnea episodes. Least thoraco-abdominal movements and body position were successfully classified in lying down control subjects, paving the way toward apnea type classification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.