Abstract

Doping with the optimum concentration of carriers (electrons or holes) can modify the physical properties of materials. Therefore, improved ways to achieve carrier doping have been pursued extensively for more than 50 years. Metal-intercalation is one of the most important techniques for electron doping of organic / inorganic solids, and has produced superconductors from insulators and metallic solids. The most successful examples are metal-intercalated graphite and C60 superconductors. Metal intercalation has been performed using solid-reaction and liquid solvent techniques. However, precise control of the quantity of intercalants in the target solids can be difficult to achieve using these methods, as that quantity depends largely on the initial conditions. Here we report an electrochemical method for metal-intercalation, and demonstrate the preparation of superconductors using organic and inorganic materials (C60 and FeSe). The metal atoms are effectively intercalated into the spaces in C60 and FeSe solids by supplying an electric current between electrodes in a solvent that includes electrolytes. The recorded superconducting transition temperatures, Tc’s, were the same as those of metal-intercalated C60 and FeSe prepared using solid-reaction or liquid solvent techniques. This technique may open a new avenue in the search for organic / inorganic superconductors.

Highlights

  • working electrode (WE) counter electrode (CE) organic materials involves complex accumulation processes

  • We applied a constant voltage between the CE and WE during the electrochemical reaction

  • We performed the electrochemical intercalation of K atoms in KxC60 that was synthesized by the usual solid-state reaction method[13], because metallic/superconducting KxC60 should operate effectively as a good WE

Read more

Summary

Introduction

WE CE organic materials involves complex accumulation processes. From this experiment, we obtained a hint about how to accumulate carriers in solids and to modify their electronic structure. The electrochemical reaction may be an effective way to induce novel physical properties. This paper discusses how we applied the electrochemical approach to C60 and FeSe solids to accumulate electrons, i.e. to intercalate metal atoms. This leads to electron accumulation in the C60 molecules or FeSe layers. As a result, superconducting K3C60 and K- or Na-doped FeSe could be generated

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call