Abstract

The idea of direction changing and order reducing is proposed to generate an exponential difference scheme over a five-point stencil for solving two-dimensional (2D) convection-diffusion equation with source term. During the derivation process, the higher order derivatives alongy-direction are removed to the derivatives alongx-direction iteratively using information given by the original differential equation (similarly fromx-direction toy-direction) and then instead of keeping finite terms in the Taylor series expansion, infinite terms which constitute convergent series are kept on deriving the exponential coefficients of the scheme. From the construction process one may gain more insight into the relations among the stencil coefficients. The scheme is of positive type so it is unconditionally stable and the convergence rate is proved to be of second-order. Fourth-order accuracy can be obtained by applying Richardson extrapolation algorithm. Numerical results show that the scheme is accurate, stable, and especially suitable for convection-dominated problems with different kinds of boundary layers including elliptic and parabolic ones. The idea of the method can be applied to a wide variety of differential equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.