Abstract

One of the most important problems of nonlinear dynamics is related to the development of methods concerning the identification of the dynamical modes of the corresponding systems. The classical method is related to the calculation of the Lyapunov characteristic exponents (LCEs). Usually, to implement the classical algorithms for the LCEs calculation, the smoothness of the right-hand sides of the corresponding equations is required. In this work, we propose a new algorithm for the LCEs computation in systems with strong nonlinearities (these nonlinearities cannot be linearized) including the hysteresis. This algorithm uses the values of the Jacobi matrix in the vicinity of singularities of the right-hand sides of the corresponding equations. The proposed modification of the algorithm is also can be used for systems containing such design hysteresis nonlinearity as the Preisach operator. (Thus, this modification can be used for all members of the hysteresis family.) Moreover, the proposed algorithm can be successfully applied to the well-known chaotic systems with smooth nonlinearities. Examples of dynamical systems with hysteresis nonlinearities, such as the Lorentz system with hysteresis friction and the van der Pol oscillator with hysteresis block, are considered. These examples illustrate the efficiency of the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.