Abstract

To improve source–sink relationship based carbon-allocation models, the basic proportional model was extended to account for a well-known effect of individual source to sink distances: among different sinks of similar characteristics, the more distant from the source, the lower the allocation coefficient. This was achieved through multiplication of the sink strength value by a coefficient that is proportional to a decreasing, simple function of distance, f; the power form was chosen for both simplicity and theoretical reasons. The resulting model was parameterized and evaluated on the empirical allocation matrix of the ECOPHYS model, after grouping together several individual, small sinks of similar nature and close location to remove any phyllotaxy-related bias. Both goodness of fit and predictive value were significantly improved compared with the basic proportional model (f = constant). The f-extended model yielded even better results if segments of different nature or age on the source to sink pathway were assigned different weights in the expression of distance, whereas the default expression of f, with an exponent of –1 and no additive constant, was optimal with no further parameter required. Thus, only 7 parameters (3 for pathway segment weights and 4 for sink strength values) were sufficient to retrieve the original 68 independent experimental allocation coefficients with a reasonable degree of accuracy. Pathway segment weights likely reflect both intrinsic transport pathway properties and situation within the plant architecture; this is discussed in relation to the possibilities of generalization and practical use of the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.