Abstract

Bioactive silicon-containing hydroxyapatite (Si-HA) thin films that can be used as coatings for bone tissue replacement have been developed. A magnetron co-sputtering technique was used to deposit Si-HA films up to 700 nm thick on titanium substrates, with a silicon level up to 1.2 wt%. X-ray diffraction demonstrated that annealing transformed the as-deposited Si-HA films which were amorphous, into a crystalline HA structure. A human osteoblast-like (HOB) cell model was used to determine the biocompatibility of these films. HOB cells were seen to attach and grow well on the Si-HA films, and the metabolic activity of HOB cells on these films was observed to increase with culture time. Furthermore, mineralisation of the cell layers was observed after 8 weeks of culture. Based on the present findings, Si-HA of different film compositions demonstrate bioactive properties in-vitro, and indicate the potential as biocoatings for a wide variety of medical implants including load-bearing applications such as the femoral stem of hip replacement implants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.