Abstract
Environment perception is one of the important issues for unmanned ground vehicle (UGV). It is necessary to develop waters hole detection and tracking method in cross-country environment. This paper is related to the waters hole detection and tracking by using visual information. Image processing strategies based on support vector machine (SVM) and speeded up robust feature (SURF) methods are employed to detect and track waters hole. It focuses on how to extract the waters feature descriptor by exploring the machine learning algorithm. Based on the S/V color features and Gray Level Co-occurrence Matrix, the waters feature descriptor is extracted. The radial basis function (RBF) kernel function and the sampling-window size are determined by using the SVM classifier. The optimal parameters are obtained under the cross-validation conditions by the grid method. In terms of waters tracking, SURF feature matching method is applied to extract the remarkable feature points, then to observe the relation between feature point movement of adjacent frames and scale change ratio. Experiments show that SURF algorithm can still be effective to detect and match the remarkable feature points, against the negative effects of waters scale transformation and affine transform. The conclusion is that the computing speed of SURF algorithm is about three times faster than that of scale-invariant feature transform (SIFT) algorithm, and the comprehensive performance of SURF algorithm is better.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Pattern Recognition and Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.