Abstract
Study regionThe Yulin Region in the Northern China. Study focusThere is an urgent need to balance supply and demand in respond to water shortages in arid and semi-arid areas. A new water-adaptable allocation framework is used to simulate different allocation scenarios. Firstly, the supply-demand was analyzed to determine whether an imbalance existed. Then, the structure of grain and energy of Yulin was optimized. In order to produce new water-adaptable boundary of industry demand. Finally, the allocation of water resources was optimized based on the target of minimizing the water shortage rate. New hydrological insights for the regionThe new scheme results highlight that by 2025, it is predicted that in a BAU (business as usual) scenario, there will be an imbalance between the water supply and water demand in Yulin Region. Following the optimization of the grain and energy industrial structure (GES), and the WAS (water allocation and simulation) model used to create a water resources allocation scheme and tested its applicability using two rainfall guarantee rates scenarios, it was determined that the total water demand established for the both scenarios decreased, and the economic benefit increased by 12.43 %. Also, 87.41∼99.93 % of potable water is satisfied to the initial water needs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.