Abstract

We present new VLA 22-GHz and e-MERLIN 5-GHz observations of CLASS B1030+074, a two-image strong gravitational lens system whose background source is a compact flat-spectrum radio quasar. In such systems we expect a third image of the background source to form close to the centre of the lensing galaxy. The existence and brightness of such images is important for investigation of the central mass distributions of lensing galaxies, but only one secure detection has been made so far in a galaxy-scale lens system. The noise levels achieved in our new B1030+074 images reach 3 microJy/beam and represent an improvement in central image constraints of nearly an order of magnitude over previous work, with correspondingly better resulting limits on the shape of the central mass profile of the lensing galaxy. Simple models with an isothermal outer power law slope now require either the influence of a central supermassive black hole, or an inner power law slope very close to isothermal, in order to suppress the central image below our detection limit. Using the central mass profiles inferred from light distributions in Virgo galaxies, moved to z=0.5, and matching to the observed Einstein radius, we now find that 45% of such mass profiles should give observable central images, 10% should give central images with a flux density still below our limit, and the remaining systems have extreme demagnification produced by the central SMBH. Further observations of similar objects will therefore allow proper statistical constraints to be placed on the central properties of elliptical galaxies at high redshift.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.