Abstract

Abstract A new visible (VIS; 0.55–0.9 μm) albedo normalization method, that is, the quasi-Lambertian surface adjustment (QLSA), is developed herein by using the geostationary meteorological satellite data and radiative transfer model. Taking the variation of relative locations between the sun, satellite, and clouds into account, the QLSA effectively reduces the inconsistencies in the VIS image brightness caused by the Lambertian surface approximation to cloud tops (i.e., the reflection characteristic is isotropic). The evaluation, using Chinese and Japanese geostationary satellite data, shows that the QLSA is more effective and accurate than three other albedo normalization methods currently in use. The new algorithm is applicable in regions with solar zenith angle and satellite zenith angle less than 60°, which, in the summertime, approximately corresponds to the time range from 0800 to 1600 local time (LT).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.