Abstract
Reliable and accurate vehicle motion models are of vital importance for automotive active safety systems for a number of reasons. First of all, these models are necessary in tracking algorithms that provide the safety system with information. Second, the motion model is often used by the safety application to make long-term predictions about the future traffic situation. These predictions are then part of the basic data used by the system to determine if, when, and how to intervene. In this paper, we suggest a framework for designing accurate vehicle motion models. The resulting models differ from conventional models in that the expected control input from the driver is included. By also providing a methodology for a formal treatment of the uncertainties, a model structure well suited, e.g., in a tracking algorithm, is obtained. To utilize the framework in an application will require careful design and validation of submodels to calculate the expected driver control input. We illustrate the potential of the framework by examining the performance for a specific model example using real measurements. The properties are compared with those of a constant acceleration model. Evaluations indicate that the proposed model yields better predictions and that it has an ability to estimate the prediction uncertainties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.