Abstract
Variational image restoration models for both additive and multiplicative noise (MN) removal are rarely encountered in the literature. This paper proposes a new variational model and a fast algorithm for its numerical approximation to remove independent additive and MN from digital images. Two previous works by L. Rudin, S. Osher, and E. Fatemi [Nonlinear total variation based noise removal algorithms, Phys. D 60 (1992), pp. 259–268] and Z. Jin and X. Yang [Analysis of a new variational model for multiplicative noise removal, J. Math. Anal. Appl. 362 (2010), pp. 415–426] are used to develop the new model. As a result, developing a fast numerical algorithm is difficult because the associated Euler–Lagrange equation is highly nonlinear and standard unilevel iterative methods are not appropriate. To this end, we develop an efficient nonlinear multigrid approach via a robust fixed-point smoother. Numerical tests using both synthetic and realistic images not only confirm that our new model delivers quality results but also that the proposed numerical algorithm allows a very fast numerical realization of the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.