Abstract
Rader abd Brenner's ‘real-factor’ FFT can be applied to Radix-4 FFT to fetch saving in the multiplication counts. However in turn the number of addition count increases which results in increase in total flop count. For this in this paper two levels of saving ideas are proposed. First is a slight modification to Rader and Brenner's ‘real-factor’ FFT for Radix-4, which not only reduces the multiplication but also makes the total flop count equals to standard Radix-4 FFT. Second is to apply the scaling operation to the Twidlle Factors(TF) similar to Tangent FFT like one proposed by Frigo for split radix so that the net computational complexity is of the order of 4Nlog2N computation, where N is the size of FFT. As such the complexity order is same as Standard Split Radix FFT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.