Abstract

PurposeTo achieve variable stiffness, this paper aims to design a flexible actuator with variable stiffness by using the magnetorheological effect of magnetorheological fluid. The variable stiffness actuator can well meet the safety requirements of human–robot interaction and be more adaptable to unknown or complex environments. The variable stiffness actuator designed in this study can realize the continuous and controllable change of stiffness compared with the existing actuator.Design/methodology/approachThe principle of variable stiffness actuator is illustrated in detail; the three-dimensional model and mechanical model of the flexible actuator are provided. The magnetic field distribution of the actuator coil is analyzed, and the dynamic model of the actuator is provided.FindingsOutput torque test suggests that the magnetorheological fluid variable stiffness actuator (VSAMF) can output a stable torque which meets the designing requirements of the test; sinusoidal follow-up test shows that VSAMF can implement sinusoidal follow-up; variable stiffness test shows that VSAMF can achieve real-time variable stiffness adjustment; the crash test suggests that VSAMF can well protect machines when meeting obstacles.Originality/valueIn this paper, a new variable stiffness joint is proposed through changing the current to change the performance of the stiffness, and it can realize the continuous and controllable change of stiffness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call