Abstract
Numerous variable step-size normalized least mean-square (VSS-NLMS) algorithms have been derived to solve the dilemma of fast convergence rate or low excess mean-square error in the past two decades. This paper proposes a new, easy to implement, nonparametric VSS-NLMS algorithm that employs the mean-square error and the estimated system noise power to control the step-size update. Theoretical analysis of its steady-state behavior shows that, when the input is zero-mean Gaussian distributed, the misadjustment depends only on a parameter β controlling the update of step size. Simulation experiments show that the proposed algorithm performs very well. Furthermore, the theoretical steady-state behavior is in very good agreement with the experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.