Abstract

Silicon carbide (SiC) power MOSFETs have been commercialized to replace silicon insulated gate bipolar transistors (IGBTs) in power conversion applications. However, the short-circuit ruggedness of SiC power MOSFETs must be enhanced to match that of Si IGBTs for application in motor drives for electric vehicles. A new, user-configurable method with a series-connected, Si enhancement mode MOSFET (EMM) is demonstrated to improve the short-circuit withstand time of commercially available 1.2-kV SiC power MOSFETs by 86% with a 4.2% increase in on- resistance and a 13% increase in switching loss. In contrast, operating the 1.2-kV SiC power MOSFET with a reduced gate bias of 15 V produces an 80% improvement in short-circuit withstand time with 31% increase in on- resistance and a 31% increase in switching loss. It is demonstrated that the drain of the EMM can be used as a sensing node to monitor on- state current and to detect short-circuit events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.