Abstract

Let ϕ denote the real function $$\varphi (k) = k\smallint _0^{\pi /2} \frac{{cos^2 t}}{{\sqrt {1 - k^2 sin ^2 t} }}dt, - 1 \leqq k \leqq 1$$ and letK G C be the complex Grothendieck constant. It is proved thatK G C ≦8/π(k 0+1), wherek 0 is the (unique) solution to the equationϕ(k)=1/8π(k+1) in the interval [0,1]. One has 8/π(k 0+1) ≈ 1.40491. The previously known upper bound isK G C ≦e 1−y ≈ 1.52621 obtained by Pisier in 1976.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.