Abstract

In Conventional Deformation Analysis (CDA), at least two different epochs are adjusted by using the Least Squares Estimation (LSE) method and compared statistically. The effect of the geometry of the network is an essential part of the adjustment model and the LSE method smears the effects of the displaced point over the other nondisplaced points. In this study, to remove these spoiling effects and to increase the reliability of the deformation analysis, a new approach is introduced. This approach depends on the analysis of the differences between observations of the two epochs, and also considers the principles of the model error approach. All possible combinations of the differences of the observations are considered as model errors in Gauss-Markov model and the estimated model error for the combination, that has the smallest variance, is compared with a critical value to answer the question whether it is significant or not. To compare the results of the new approach with the CDA, the Monte Carlo simulation technique and mean success rate are used in a leveling network. As a consequence, according to the simulation results, the new approach is better than the CDA by 7.6% and 9.7% for one and two displaced points, respectively, when the deformation network is designed as a subnetwork.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.