Abstract

AbstractBecause of the collision of the Indian and Eurasian tectonic plates, the Yunnan Province of southwestern China has some of the highest levels of seismic hazard in the world. In such a region, a catalog of moment tensors is important for estimating seismic hazard and helping understand the regional seismotectonics. Here, we present a new uniform catalog of moment tensor solutions for the Yunnan region. Using a grid-search technique to invert seismic waveforms recorded by the permanent regional network in Yunnan and the 2 yr ChinArray deployment, we present 1833 moment tensor solutions for small-to-moderate earthquakes that occurred between January 2000 and December 2014. Moment magnitudes in the new catalog vary from Mw 2.2 to 6.1, and the catalog is complete above Mw∼3.5–3.6. The moment tensors are constrained to be purely double-couple and show a variety of faulting mechanisms. Normal faulting events are mainly concentrated in northwest Yunnan, while farther south along the Sagaing fault the earthquakes are mostly thrust and strike slip. The remaining area includes all three styles of faulting but mostly strike slip. We invert the moment tensors for the regional stress field and find a strong correlation between spatially varying maximum horizontal stress and Global Positioning System observations of horizontal ground velocity. The stress field reveals clockwise rotation around the eastern Himalayan syntaxis, with northwest–southeast compression to the east of the Red River fault changing to northeast–southwest compression west of the fault. Almost 88% of the centroid depths are shallower than 16 km, consistent with a weak and ductile lower crust.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.