Abstract

In conventional offset lithographic printing, it has been well established that the existence of a continuous layer of fountain solution (FS) on the surface of the non-image area is an essential condition to ensure correct operation of lithography. However, the mechanistic function of FS in preventing the ink from being transferred onto the non-image area has not been fully understood. Several major mechanistic interpretations can be found in the literature, which are based either on comparing of static works of adhesion and cohesion of ink and FS, or on the splitting of the 'weaker' FS layer. Although the latter becomes more accepted, direct experimental evidence is difficult to find in the literature. On the other hand, confusing information found in the literature showed that the ink-transfer (or non-transfer) observations reported in many case studies correlate well with simple comparisons of works of adhesion, cohesion and spreading data of ink/FS, ink/plate and FS/plate obtained under the static condition. These results, therefore, imply that, in explaining the function of FS in preventing ink transfer to the non-image area, the ink/FS interfacial adhesion failure would be the dominant mechanism. The work presented in this study covered two specific areas in order to address and better understand the responses of ink and FS layers and their interface to forces encountered during ink transfer. Firstly, an analysis of lithographic plates contaminated with a cationic polymer revealed that the violation of the ink non-transfer condition of the plate non-image area due to contamination could be predicted by traditional criteria of plate wetting and works of adhesion and cohesion. However, these traditional criteria cannot reliably predict the non-transfer condition of the ink on the clean non-image area that was covered by FS. Secondly, in some novel experiments conducted in this study using ice or Teflon as a substrate, the works of adhesion and cohesion were not able to predict ink transfer in most cases. Direct experimental evidence from this work revealed that splitting of the FS layer was involved in the prevention of ink transfer to the non-image areas, and that the thickness of the FS layer was critical in allowing the splitting to occur.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call