Abstract
The QR method is one of the most common methods for calculating the eigenvalues of a square matrix, however its understanding would require complicated and sophisticated mathematical logics. In this article, we present a simple way to understand QR method only with a minimal mathematical knowledge. A deflation technique is introduced, and its combination with the power iteration leads to extracting all the eigenvectors. The orthogonal iteration is then shown to be compatible with the combination of deflation and power iteration. The connection of QR method to orthogonal iteration is then briefly reviewed. Our presentation is unique and easy to understand among many accounts for the QR method by introducing the orthogonal iteration in terms of deflation and power iteration.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Korean Society for Industrial and Applied Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.