Abstract
Radio Frequency IDentification (RFID) is one of the most promising identification schemes in the field of pervasive systems. Unique identification and non-line of sight capabilities make RFID systems more protuberant than its contending systems. As RFID systems incorporate wireless channel, there are some allied security threats and apprehensions to the systems from malicious adversaries. In order to make the system reliable and secure, numerous Ultralightweight Mutual Authentication Protocols (UMAPs) have been proposed which involve only simple bitwise logical operations (AND, XOR & OR etc.) in their designs. However, almost all of the previously proposed UMAPs are reported to be vulnerable against various security attacks (Desynchronization and Full disclosure attacks etc.). In this paper, we propose a new pseudo-Kasami code based Mutual Authentication Protocol (KMAP). The proposed protocol, KMAP, avoids unbalanced logical operations (OR, AND) and introduces a new Ultralightweight primitive: pseudo-Kasami code (Kc). The newly proposed primitive (pseudo-Kasami code) enhances the diffusion properties of the protocol messages and makes hamming weight of the secrets unpredictable and irreversible. The security analysis illustrates that the KMAP provides excellent protocol functionalities and is also highly resistive against all possible attacks. The performance evaluation shows that the KMAP requires fewer resources on the tag in terms of on-chip memory, communication cost and computational operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.