Abstract

AbstractSeeking for new ceramics with excellent thermophysical properties as thermal barrier coatings candidate materials has become a hot research field. In this study, Sr(Zr0.2Hf0.2Ce0.2Yb0.2Me0.2)O3−x high‐entropy ceramic powders were successfully synthesized by the method of solid‐state reaction, and the ceramics with single phase were prepared by pressureless sintering at 1600°C. The phase composition, microstructure, element distribution, high‐temperature thermal stability, and thermophysical properties of the ceramics were studied. The results showed that Sr(Zr0.2Hf0.2Ce0.2Yb0.2Me0.2)O3−x ceramics were composed of SrZrO3 phase and the second phase of AB2O4 spinel (i.e., SrY2O4 and SrGd2O4). The content of the second phase was gradually increased after heat treatment at 1400°C, which significantly improved the thermophysical and mechanical properties of the ceramics. The microhardness and fracture toughness of the ceramics were improved compared with that of SrZrO3. The thermal conductivities of Sr(Zr0.2Hf0.2Ce0.2Yb0.2Me0.2)O3−x (Me = Y, Gd) ceramics were 1.30 and 1.28 W m−1 K−1 at 1000°C, which were about 35% and 40% lower than that of SrZrO3 (1.96 W m−1 K−1) and yttria‐stabilized zirconia (2.12 W m−1 K−1), respectively. The thermal expansion coefficients of Sr(Zr0.2Hf0.2Ce0.2Yb0.2Me0.2)O3−x (Me = Y, Gd) ceramics were 12.8 × 10−6 and 14.1 × 10−6 K−1 at 1300°C, respectively, which was more closer to the superalloys compared with SrZrO3 ceramic (11.0 × 10−6 K−1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.