Abstract
In this work, we examine the solitary wave solutions of the mKdV equation with small singular perturbations. Our analysis is a combination of geometric singular perturbation theory and Melnikov’s method. Our result shows that two families of solitary wave solutions of mKdV equation, having arbitrary positive wave speeds and infinite boundary limits, persist for selected wave speeds after small singular perturbations. More importantly, a new type of solitary wave solution possessing both valley and peak, named as breather in physics, which corresponds to a big homoclinic loop of the associated dynamical system is observed. It reveals an exotic phenomenon and exhibits rich dynamics of the perturbed nonlinear wave equation. Numerical simulations are performed to further detect the wave speeds of the persistent solitary waves and the nontrivial one with both valley and peak.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.