Abstract

In this paper, a new type of high-order finite difference and finite volume multi-resolution weighted essentially non-oscillatory (WENO) schemes is presented for solving hyperbolic conservation laws. We only use the information defined on a hierarchy of nested central spatial stencils and do not introduce any equivalent multi-resolution representation. These new WENO schemes use the same large stencils as the classical WENO schemes in [25,45], could obtain the optimal order of accuracy in smooth regions, and could simultaneously suppress spurious oscillations near discontinuities. The linear weights of such WENO schemes can be any positive numbers on the condition that their sum equals one. This is the first time that a series of unequal-sized hierarchical central spatial stencils are used in designing high-order finite difference and finite volume WENO schemes. These new WENO schemes are simple to construct and can be easily implemented to arbitrary high order of accuracy and in higher dimensions. Benchmark examples are given to demonstrate the robustness and good performance of these new WENO schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.