Abstract
In this paper, we propose a new type of finite difference weighted essentially nonoscillatory (WENO) schemes to approximate the viscosity solutions of the Hamilton–Jacobi equations. The new scheme has three properties: (1) the scheme is fifth-order accurate in smooth regions while keep sharp discontinuous transitions with no spurious oscillations near discontinuities; (2) the linear weights can be any positive numbers with the symmetry requirement and that their sum equals one; (3) the scheme can avoid the clipping of extrema. Extensive numerical examples are provided to demonstrate the accuracy and the robustness of the proposed scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.