Abstract

Dihydroorotate dehydrogenase (DHOD) (EC 1.3.3.1) from the thermoacidophilic archaeon Sulfolobus solfataricus P2 (DSM 1617) was partially purified 3,158-fold, characterized, and the encoding genes identified. Based on enzymological as well as phylogenetic methods, dihydroorotate dehydrogenase from S. solfataricus (DHODS) represents a new type of DHOD, type 1S. Furthermore, it is unable to use any of the (type-specific) natural electron acceptors employed by all other presently known DHODs. DHODS shows optimal activity at 70 degrees C in the pH range 7-8.5. It is capable of using ferricyanide, 2,6-dichlorophenolindophenol (DCIP), Q(0), and molecular oxygen as electron acceptor. Kinetic studies employing ferricyanide indicate a two-site ping-pong mechanism with K(M) values of 44.2+/-1.9 microM for the substrate dihydroorotate and 344+/-21 microM for the electron acceptor ferricyanide, as well as competitive product inhibition with a K(i) of 23.7+/-3.4 microM for the product orotate (OA). The specific activity, as determined from a partially purified sample, is approximately 20 micromol mg(-1) min(-1). DHODS is a heteromeric enzyme comprising a catalytic subunit encoded by pyrD (291 aa; MW=31.1 kDa) and an electron acceptor subunit (208 aa; MW=23.6 kDa), encoded by orf1. DHODS employs a serine as catalytic base, which is unique for a cytosolic DHOD. To our knowledge, this work represents not only the first study on an archaeal DHOD but the first on a nonmesophilic DHOD as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call