Abstract

This paper establishes a new type component mode synthesis method for a flexible beam element based on the absolute nodal coordinate formulation. The deformation of the beam element is defined as the sum of the global shape function and the analytical clamped-clamped beam modes. This formulation leads to a constant and symmetric mass matrix as the conventional absolute nodal coordinate formulation, and makes it possible to reduce the system coordinates of the beam structure which undergoes large rotations and large deformations. Numerical examples show that the excellent agreements are examined between the presented formulation and the conventional absolute nodal coordinate formulation. These results demonstrate that the presented formulation has high accuracy in the sense that the presented solutions are similar to the conventional ones with the less system coordinates and high efficiency in computation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.