Abstract

© 1997-2012 IEEE. Convergence and diversity are interdependently handled during the evolutionary process by most existing many-objective evolutionary algorithms (MaOEAs). In such a design, the degraded performance of one would deteriorate the other, and only solutions with both are able to improve the performance of MaOEAs. Unfortunately, it is not easy to constantly maintain a population of solutions with both convergence and diversity. In this paper, an MaOEA based on two independent stages is proposed for effectively solving many-objective optimization problems (MaOPs), where the convergence and diversity are addressed in two independent and sequential stages. To achieve this, we first propose a nondominated dynamic weight aggregation method by using a genetic algorithm, which is capable of finding the Pareto-optimal solutions for MaOPs with concave, convex, linear and even mixed Pareto front shapes, and then these solutions are employed to learn the Pareto-optimal subspace for the convergence. Afterward, the diversity is addressed by solving a set of single-objective optimization problems with reference lines within the learned Pareto-optimal subspace. To evaluate the performance of the proposed algorithm, a series of experiments are conducted against six state-of-The-Art MaOEAs on benchmark test problems. The results show the significantly improved performance of the proposed algorithm over the peer competitors. In addition, the proposed algorithm can focus directly on a chosen part of the objective space if the preference area is known beforehand. Furthermore, the proposed algorithm can also be used to effectively find the nadir points.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.