Abstract
In this study, the authors propose a new two-stage decoding scheme for low-density parity-check codes to lower the error-floor, which consists of the conventional belief propagation (BP) decoding algorithm as the first-stage decoding and the re-decodings with manipulated log-likelihood ratios (LLRs) of variable nodes as the second-stage decoding. In the first-stage decoding, an early stopping criterion is proposed for early detection of decoding failure and the candidate set of the variable nodes are determined, which can be partly included in the small trapping sets. In the second-stage decoding, the scores of the variable nodes in the candidate set are computed by the proposed unreliable path search algorithm and the variable nodes are sorted in ascending order by their scores for the re-decoding trials. Each re-decoding trial is performed by BP decoding algorithm with manipulated LLR of a selected variable node in the candidate set one at a time with the second early stopping criterion. The parallel unreliable path search algorithm is also proposed for practical application of the proposed algorithm. Numerical results show that the proposed early stopping criteria and the proposed decoding algorithms for the second-stage decoding can correct most of the unsuccessfully decoded codewords by the first-stage decoding in the error-floor region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.