Abstract

SUMMARY The present study proposes a new two-step approach to prediction of the continuous soil water characteristic (SWC) from saturation to oven-dryness from a limited number of measured textural data, organic matter content and dry bulk density. The approach combines dry- and wet-region functions to obtain the entire SWC by means of parameterizing a previously developed continuous equation. The dry region function relates gravimetric soil fractions to adsorptive forces and the corresponding water adsorbed to soil particles. The wet region function converts the volumetric particle size fractions to pore size fractions and utilizes the capillary rise equation to predict water content and matric potential pairs. Twenty-one Arizona source soils with clay and organic carbon contents ranging from 0.01 to 0.52 kg kg−1 and 0 to 0.07 kg kg−1, respectively, were used for the model development. The SWCs were measured with Tempe cells, a WP4-T Dewpoint Potentiameter, and a water vapor sorption analyzer (VSA). The model was subsequently tested for eight soils from various agricultural fields in Denmark with clay contents ranging from 0.05 to 0.41 kg kg−1. Test results clearly revealed that the proposed model can adequately predict the SWC based on limited soil data. The advantage of the new model is that it considers both capillary and adsorptive contributions to obtain the SWC from saturation to oven-dryness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.