Abstract

This paper devises a new two-lane lattice hydrodynamic model (TLHM) to explore driver’s predictive effect (DPE) on traffic oscillation. First, a linear approach is conducted to analytically predict the DPE on traffic performance. Theoretical analysis shows that with the help of DPE, the traffic flow stability will be gradually enhanced. Then, nonlinear analysis is implemented to explore the characteristics of traffic oscillation when sensitivity coefficient is near the critical point. The modified KdV equation derived from the new model and its analytical solution related kink–antikink density waves are obtained. Finally, numerical experiments show that the DPE can effectively dampen the growth of oscillation, which is well consistent with the theoretical analysis of the new model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.